The Genetic code: Section II

Simpler numeral series

Åsa Wohlin
www.u5d.net

2015-03-23

CONTENT

Page

12. Simpler numeral series: comparisons with the ES-series.
 Some first notes
 55

13. The $2 x^{2}$-chain
 57

14. Halved orbitals as a superposed chain 66
15. $x^{1}-$ The triplet series. - The x^{4}-series 69
16. $\quad \mathrm{An} \mathrm{x}^{3}$ series 73

12. Simpler numeral series - Comparisons with the ES-series - some first notes -

A. Some simple quotients:

The simple quotients $7 / 24,6 / 24,5 / 24$ times 10^{3} approximate first three numbers of the ES-chain, since total sum of ams R is nearly 1500 (particularly if we count on Lys and the two Arg uncharged), Note the sum of the series 5-4-3-2-1-0=15.
However, the lower numbers in the ES-chain are not given through simple quotients.
Fig 12-1: 7,6, 5 parts of 24, decimals \sim ES-numbers:

$$
\begin{array}{ll}
\mathbf{7} / \mathbf{2 4}=0, \mathbf{2 9 2} ., \times 10^{+3} \times 2=\mathbf{5 8 4} . & \mathbf{2 9 2 + 2 5 0}=\mathbf{G} 1+\mathbf{C} 1-\mathbf{2} \\
\mathbf{6} / \mathbf{2 4}=0, \mathbf{2 5 0} \times 10^{+3} \times 2=\mathbf{5 0 0}(2 \times 252-4) \quad+\mathbf{2} \times \mathbf{2 0 8}=\mathbf{U} \mathbf{1}+\mathbf{A} 1-2 \\
\mathbf{5} / \mathbf{2 4}=0,208 ., \times 10^{+3} \times 2=\mathbf{4 1 6 .} \ldots \ldots \ldots \text { intervals in the steps } 84 \\
\mathbf{2} / \mathbf{2 4}=0,083 ., \times 10^{+3} \times 2=\mathbf{2} \times \mathbf{8 4}(-1) . &
\end{array}
$$

Cf. numbers 7, 6 , 5 with halved numbers of electrons in orbitals $f, s+d$, and d, see below and file 13 about the periodic system.

A division 10-8-6 of the total 24 ams times 1504 in agreement with number of ams, 10 (2×5) in G1 and C1, 8 in A1, 6 in U1, gives sums that through a displacement of 84 (\sim $2 / 24=292-208$ in the ES-chain) gives the G+C- and U+A-groups, figure 12-2 below..
Applying exponent $2 / 3$ to these $10-8-6$-parts of the total, gives abbreviated times 4 the appropriate numbers of the ES-chain.

Fig 12-2: 10, 8, 6 parts of 24, transformed to ES-numbers:

$$
\begin{aligned}
10 / 24 \times 1504 & =\mathbf{6 2 7},-\mathbf{8 4}=\mathbf{5 4 4}-\mathbf{1} .(\mathrm{G}+\mathrm{C}-1) \\
8 / 24 \times 1504 & =\mathbf{5 0 1 .} \quad=\mathbf{5 0 0 + 1}(\mathrm{Al}+4),(292+208,+1) \\
6 / 24 \times 1504 & =\mathbf{3 7 6}+\mathbf{8 4}=\mathbf{4 6 0 .} \quad(\mathrm{U} 1-3),(252+208)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{1 0 / 2 4} \times 1504=627 . \rightarrow 627^{2 / 3}=73,26 \rightarrow 7 \mathbf{3 \times 4}=\mathbf{2 9 2} .=5^{2 / 3} \times 100 \\
& 8 / 24 \times 1504=501 . \quad 501^{2 / 3}=63,11 \quad \mathbf{6 3} \times 4=252 .=4^{2 / 3} \times 100 \\
& \begin{array}{llll}
\mathbf{6 / 2 4} \times 1504=376 \\
\text { Sum } & 1504 & \frac{376^{2 / 3}=52,09}{\text { Sum }} 188,43
\end{array}
\end{aligned}
$$

$\mathbf{6 3} \times 52$ happen to give the whole sum of $24 \mathrm{ams} \mathrm{R}+\mathrm{B}$ unbound $=\mathbf{3 2 7 6}$.
A note:
Numbers $7 / 24$ and $5 / 24$ above $=0,292-1 / 3$ and $0.208+2 / 3$.
Orbital numbers with reference to file 13

$$
\begin{array}{r}
14-2 / 3, / 24=0,5555 \ldots \\
10+2 / 3, / 24=0,4444 \ldots \\
8, \quad / 24=0,3333 \ldots \\
\hline 2+2 / 3, \quad / 24=0,1111 \ldots
\end{array}
$$

B. Survey of different numeral series on $x=5-0$:

a) \mathbf{x}^{1} : 5-4-3-2-1-0 read as triplets: 543-432-321-210
b) $2 \mathrm{x}^{2}$: 50-32-18-8-2-0: the chain behind the periodic system. Intervals in the steps as orbitals in electronic shells.
c) Halved orbital numbers $1 / 2(18-14-10-6-2)$ as a superposed chain:

Fig 12-3: Halved orbitals as a superposed chain:

$$
\begin{gathered}
9 \quad 7 \quad 5{ }^{9} /{ }^{9} 1 \\
/ 1 / 1 / 1 / 1 \\
5-4-3-2-1-0 / 00
\end{gathered}
$$

d) $\mathbf{x}^{3}:$ 125-64-27-8-1-0.
e) \mathbf{x}^{4} : 625-256-81-16-1-0.

13. The $2 x^{2}$-chain

1. The $2 x^{2}$-chain behind the periodic system:

1. It is one rather natural hypothesis that the genetic code could originate from a similar number chain as for instance the $2 \mathrm{x}^{2}$-chain behind the Periodic system, figure 13-1 below. The ES-chain is the cubic roots out of numbers in this chain halved. Is there anything pointing to a more direct connection?
(In the figure is pointed to the fact that reading these numbers in decreasing numberbase systems (nb-x) 10-8-6-4-2 and translating them to nb-10 gives the very simple chain 50-40-30-20-10.)

Fig 13-1: The $2 x^{2}$-chain behind the periodic system:

*Note adds 2 times 8 and 18 .
10 times elementary chain read in decreasing nb-systems:

	$\frac{\mathrm{nb}-10}{50}$	$\frac{\mathrm{nb}-8}{40}$	$\frac{\mathrm{nb}-6}{30}$	$\frac{\mathrm{nb}-4}{20}$	$\frac{\mathrm{nb}-2}{10}$
$=$	50	32	18	8	2

2. $\mathbf{G}+\mathbf{C}$ and $\mathrm{U}+\mathrm{A}-\mathrm{groups}:$

First observations is that numbers in the chain times a factor 16 gives mass of the main groups of G + C- and U + A (R), fig. 13-2], total sum $94 \times 16=1504$.
(Simultaneously we have that sum of the whole chain 110, times 16, $=1760$, e. g the total sum of Z in the 24 ams unbound. About Z, see Para 6 below.)

Fig 13-2: $2 x^{2}$-chain, main codon groups 544, 960 through a factor 16:

With reference to the dimension model behind this site (cf. the "loop model", figure 1-2) three polarizations of dimension degree 5 (the whole): $5 \rightarrow 0+00,5 \rightarrow 4+1,5 \rightarrow 3 \rightarrow$ $3+2$

Fig 13-3

However, number 544 appears also "linearly" as a sum:
$(32-8) \times 16=\mathbf{3 8 4}$
$(18-8) \times 16=\mathbf{1 6 0}$
Sum: 544
It may be noted that first three numbers 50-32-18 in the $2 \mathrm{x}^{2}$-chain times a factor \sim 30 (2 times the elementary series 5-0) roughly approximate the sum and division on U+A and G+C groups: 1500-960-540.

3. Some general observations:

Both 208-numbers in the ES-chain and here 416 goes to the U+A-group of ams. Cf. perhaps that additions 8 and 18 are repeated two times to whole shells in the periodic system (through displacement of d-orbitals; s-orbitals of next shell first filled).
$\mathbf{2 6 2}=676$, the middle number $\mathbf{1 8}+\mathbf{8}$ in this $\mathbf{2 x} \mathbf{x}^{2}$-chain squared, times $\mathbf{2}=\mathbf{1 3 5 2}$, sum of all ams R without H -atoms; this factor 26 also something to remember. Total number of ams, $\mathrm{R}+\mathrm{B}=3276=26 \times 126$.

Number 94, 60 + 34; and Selenocysteine:
Number 94 (times $16=1504$, total of ams R) is also the R-chain of the so-called 21st ams Selenocysteine, 34 Z, with isotope 79 of Selenium: A $(R)=94=2 \times 47$, the Rchain of Cys with its special role in protein folding. Se-Cys is encoded in a special way and could be an example of how Nature elaborates to fill arithmetical patterns?
About numbers 94, 47, 34 and the division of number 128, see Subpages II, file 04. para. 6

Total number of atoms in $\mathrm{R}+\mathrm{B}$-chains of the 24 ams without H -atoms $=224=$ = 14×16. (14 the interval in step 4" - $3^{\prime \prime}$).

4. All integers $1-110=6105$:

Another curious connection is that the sum of all integers 1-110 of the whole chain $=$ $111 \times 55=6105$, inverted $=$ half the total sum 3276 of 24 unbound ams 1638 as a periodic number,

Fig 13-4: 6105 , total sum of numbers 1-110:

$$
\begin{aligned}
& \frac{1-110=55 \times 111=6105, \wedge=1638,00 \text {-period. } 1 / 2 \times 3276}{1 / 55-1 / 555=\underline{1638} 00163800 \ldots \times 10^{x}=1 / 2 \times 3276 \text { as period }} \\
& =0.0181818 \ldots \text { and } 0.00180180180 \ldots \\
& 1 / 55 \times 1 / 555=\underline{3276} 00327600 \times 10^{x} \text { as period }
\end{aligned}
$$

* Numbers 18 and 180 as decimal periods are equivalent with masses of H 2 O and glucose, fructose, essential starts for ams!

5. Mass numbers, other groups:

Fig. 13-5. 16 times the $2 x^{2}$-chain:

a) The two 12-groups of ams, 770: and 734, -/+2 = 768 and 734:

12-group 770, ams with the mixed codons, $-2=768,2 \times 384$:
$384=800-416$ (or 512-128 or 416-32),
an interval here as in the ES-chain.
384 divided in numbers 208 and 176;

- 208 $=1 / 2 \times 416,=3$ ' in the ES-chain.
- $\mathbf{1 7 6}=1 / 2$ interval 512 to $160(128+32)$

12-group 734, non-mixed codons, $+\mathbf{2}=736$ ($=32 \times 23$):

$$
\begin{aligned}
& \mathbf{2 \times 2 8 8}+\mathbf{1 6 0}=\mathbf{7 3 4}+\mathbf{2} .(160 \text { interval } \underline{288-128} \text { or } \underline{128+32}) \\
& \text { G1 })+\mathrm{C} 1=160,-1 \\
& \text { U1 }+ \text { A } 1 \text { in this } 2 \text {-group }=\mathbf{2} \times \mathbf{2 8 8} \mathbf{- 1}=416+160,=\mathbf{5 7 6}, \mathbf{- 1} . \\
& -U 1=\mathbf{2 8 8}-\mathbf{3 2}=256,-1 . \\
& - \text { A } 1=\mathbf{2 8 8}+\mathbf{3 2}=320 .
\end{aligned}
$$

Note the similarity in derivations with the ES-chain: in these groups: 384 is an interval of the type $52 / 3-22 / 3\left(\times 10^{2}\right)$ in the ES-chain., and the other 12 -group $(734+2)$ appear in the middle step as in that chain, both 288 -nuumbers belonging to the 734 -group.

Cf. numbers in paragraph xx below. Cf. below Pyramid numbers.
b) Purine - Pyrimidine pairs:

Fig. 13-6: Sums of ams R in codon groups:

$$
\begin{aligned}
& \mathbf{4 0 0}+\mathbf{4 1 6}=\mathbf{8 1 6}=\mathbf{C} 1+\mathrm{U} \mathbf{1}=(25+26) \times 16 \\
& 800<1-128 \quad|\quad| \quad>(50+44) \times 16 \\
& \mathbf{4 0 0}+\mathbf{2 8 8}=\mathbf{6 8 8}=\mathbf{G 1}+\mathbf{A} 1=(25+18) \times 16
\end{aligned}
$$

c) B-chains:

B-chains bound $=1344$:
Orbital numbers (18-14-10), x $16=288+224+160=672$, x $2=1344$
$=6 \times 224$.

Why a factor $16 ?$

Factor 16 happens to appear in all single base groups in 1 st base order -/+1:
G1: 192 -1, C: 352 +1, U1 $464-1$, A1 $496+1$.
Why, however this factor 16 here, if pointing to a real connection between this $2 \mathrm{x}^{2-}$ chain behind the periodic system and codon-grouped mass in the genetic code?

- As 2^{4}, an expression for d-degree 4 , four polarizations inwards?
(16 also the inversion of $5^{4}, \times 10^{4}$.)
- And / or the factor biochemically related to mass of oxygen ${ }^{16} \mathrm{O}, 4$ alpha - or Z of ${ }^{32} \mathrm{~S}$ in a first energy source?
- Or somehow connected with the unexplained "octet rule" with a doubled expression for mass in the atomic nucleus?
It must be left here as an open question.

6. Atomic mass expressed in the levels of electron orbitals and shells?

It is natural that the distances of electron orbitals and intervals between them around an atom are expressions for atomic mass, e.g. number of charged nucleons in the nucleus and thus circa half the atomic mass of ordinary isotopes of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and S in ams.

1760 was factor 16 times the sum of the $2 \mathrm{x}^{2}$-chain and the total Z of 24 unbound ams $\mathrm{R}+\mathrm{B}$, i. e. sum of all electrons.
The number of atoms C, N, O, S in these unbound ams R+B is 224 .
Reducing 1760 with this number 224 in steps - as a kind of activation in electron shells, as suppressing of deeper orbital levels, with one electron in each step until those of Catoms are zero, gives 6 "phases". It gives stepwise mass of bound ams R+B and disintegration of R-chains doubled.

Fig 13-7: Reducing 1760 with 224 per step:

$$
\begin{aligned}
& 1760-1536-1312-1088-864-640-416 \text { : } \\
& 2848544 \quad 432 \quad 528 \rightarrow 528 \text { as } 320+208 \text {, } \\
& \text { x2 } 2 \text { x } 22 \\
& =\mathrm{G}+\mathrm{C} \quad \mathrm{U}+\mathrm{A} \quad \mathrm{U}+\mathrm{A} \rightarrow 1^{\text {st }} \text { base groups. } \\
& \mathrm{A} \rightarrow \mathrm{~N} \rightarrow \mathrm{Z} \quad\left(-/+1 \text { in } 2^{\text {nd }}\right. \text { base groups.) }
\end{aligned}
$$

2848 is the mass sum of the 24 bound ams, $R+B$, here from phases representing suppression of electrons in the K-shell.

- $\mathbf{1 5 3 6}$ is the sum of all 128 C -atoms, $\mathbf{1 3 1 2}$ sum of all other atoms.

Whole interval $1760-416=1344$, sum of 24 bound B-chains, 4×56 in each step.
544 is also the mass sum of all other atoms N, O, S, H in R-chains, $960=432+528$, the mass sum of the 80 C -atoms in R-chains.
$432=36 \mathrm{C}$-atoms in C2 $+\mathrm{U} 2,528=44 \mathrm{C}$-atoms in G2 +A 2 .
Sum of whole chain $=14 \times 544$.

Series of phases for \boldsymbol{R} - and B-chains taken separately:

R-chains: 104 atoms C, N, O, S gives minus 104 per step. $(\mathrm{H}=152)$
B-chains: 120 atoms C, N, O gives minus 120 per step. ($\mathrm{H}=92$)
Z -sum R-chains 828.
Z-sum B-chains 932.... Difference 104.

$$
\begin{aligned}
& \text { B: } 932-\frac{812-692}{\mathbf{1 5 0 4}}-572-452-332-212 \\
& \text { R: } 828-\frac{724-620}{\mathbf{1 3 4 4}}-516-412-308-204
\end{aligned}
$$

Thus, the B-chains give in first numbers the atomic mass sum of the 24 R-chains, the R-chains in first numbers the sum of the atomic mass sum of 24 B -chains bound.

7. Z-numbers, the total and its divisions:

Fig 13-8: Division of total Z 1760 in the $2 x^{2}$-chain times 16:
The total 1760 divided 800 and $960: 800=512+288$, numbers from 4 and 3 .

Sum of whole chain $=110$, times $16=\mathbf{1 7 6 0}=$ total Z-sum of $24 \mathrm{ams}(R+B)$ unbound. $960=24 \times 40, Z$-sum for B-chain of Gly with only 1 H as "R-chain".

Displacements of \mathbf{H}-atoms between R - and B -chains:

If in B-chains one H is added as replacement for R-chains, and the 4 H , reduced in B chains of Arg 1, 2, Lys and Pro, are filled from R-chains, all B-chains become NH_{2} -$\mathrm{CH}_{2}-\mathrm{COOH}=40 \mathrm{Z}$: It gives a division of the chain in step 5-4:

R-chains: $\mathbf{8 0 0} \mathbf{Z}=50 \times 16$
B-chains: $\mathbf{9 6 0} \mathbf{Z}=(32+18+8+2) \times 16=24 \times 40 \mathrm{Z}$
$(32+18) \times 16=20$ B-chains. The 4 extra B-chains $=(8+2) \times 16$.
R-chains, number 800 Z get divided:

> A1+U1: $\mathbf{5 1 2}=32 \times 16 .(528 \mathrm{Z}-14 \mathrm{H}-2 \mathrm{H}$ in Arg AG and Lys AA)
> $\underline{\text { G1 }+\mathrm{C} 1: \mathbf{2 8 8}=18 \times 16 .(300 \mathrm{Z}-10 \mathrm{H}-2 \mathrm{H} \text { (in Arg CG and Pro*) }}$
> $*$ (Has sooner to be added +H in Pro, compensated with -2 H in Glu and Asp?)

These resulting numbers 512 and 288 could give more support for a hypothesis that the $2 x^{2}$-chain influenced the code on one level and for the thought that the B-chains may have "come first" in the evolution, followed by a stepwise construction of the side chains R as substitution of H .

L-T-waves:

The backbone chains (B) of proteins may be regarded as a kind of L-waves, (assumed in fields of gravity), when unbound expressed as dipoles in terms of the electromagnetic force. Perhaps they preceded the evolution of the side chains (R), these implying a dimensional step to T-waves, characterizing electromagnetic waves.
(Cf. perhaps a hypothesis by Copley et al (2005) that ams may have been constructed at the inner OH -group of ribose between nucleotide pairs.)
(Total number of atoms $\mathrm{R}+\mathrm{B}$ without $\mathrm{H}=512-288=224$.)
Note that interval 800-512, also 288, may be connected with G1 + C1 too.

7b. Z-division on atom kinds when $24+4 \mathrm{H}$ are moved to the B-chains:

Z - B-chains as 960:
$\mathrm{C}:=\mathbf{2 8 8}$
$\mathrm{N}+\mathrm{H}(120)=\mathbf{2 8 8} .$. Sum 576, 3×192
$\mathrm{O}=\mathbf{3 8 4}=2 \times 192$
Z - R-chains as 800:

$$
\begin{aligned}
& \mathrm{C}=\mathbf{4 8 0}=\mathbf{5 1 2 - 3 2}, \\
& \mathrm{N}+\mathrm{O}+\mathrm{H}(124)+2 \mathrm{~S}=\mathbf{2 8 8}+\mathbf{3 2}=\mathbf{3 2 0}
\end{aligned}
$$

A division $3 / 2$ between C -skeleton and " substituents".

Z - total. R+B 1760:

$\mathrm{C}=2 \times 384=\mathbf{8 0 0} \mathbf{- 3 2}$
$\mathrm{S}=32$
$\mathrm{N}+\mathrm{O}+\mathrm{H}(244)=\mathbf{9 6 0}$

8. Pyramids on the $2 x^{2}$-chain:

Building figure pyramids (as Pascal's triangles) on the $2 \mathrm{x}^{2}$-chain leads of unknown reasons to numbers from the ES-chain (-1 in some of them). A couple of examples are shown in Fig. 40.

Fig 13-9: Pyramids on $2 x^{2}$-chain, 176, 384 and 158, 574:

The left pyramid is built on the cumulative sum of the chain and gives on level 3 the top numbers 176 and 385-1, interval 208, to compare with the 770-group of ams as intervals in the ES-chain.
The right pyramid is built directly on the $2 \mathrm{x}^{2}$-chain and shows the 734 -group and its codon divisions when figures are added in orthogonal directions, -1 in the $\mathrm{G}+\mathrm{C}$ - and U+A-sums. 574-158, interval 416.
Note e. g. A1 $=497=176+1$ in group 770 plus 320 in group $734=496+1$.
"2-base-coded" ams = 336-1 is the sum of $\mathbf{1 7 6}$ in the 12 -group $770(\mathrm{GU}+\mathrm{CU}+\mathrm{UC}+\mathrm{AC})$ and $\mathbf{1 5 8}+\mathbf{1}$ in 12-group $734(\mathrm{GG}+\mathrm{GC}+\mathrm{CC}+\mathrm{CG})$. These numbers appear to the left, built from lowest "dimension degrees" in the $2 \mathrm{x}^{2}$-.chain. (160 in figure 13-8 below).

Another way to see the right 574-pyramid above, $2 \times 208=416,+158$ in accordance with the ES-chain. To the left the isolated 544 -pyramid below.

Fig 13-10a, 10b::

Extending the $2 \mathrm{x}^{2}$-chain with $\mathrm{x}=6-0$ in Fig. 41,(top of pyramid to the right), and with an orbital 22 gives e. g. the sums 292 for level 1, $\mathbf{4 6 0}$ on level 2, first sums in the ESchain, and sum 1638 on levels 0 to 4 . half the total of 24 unbound ams.

Fig 13-11: Pyramid 1638, the top of it to the right:

- $\mathbf{7 5 2}=1 / 2 \times$ R-chains, $\mathbf{8 8 6}=1 / 2 \times$ B-chains of ams.
- On level 3 and 4 we get the numbers 336 - 208, sum 544.
- Top number becomes 1344 , sum of 24 bound B -chains.

Do we have to count on a 6th dimension or rather rely on Einstein that the relation between two bodies is 6 -dimensional?! Only for a total 544 . Note: G+C $544=384$ in left figure 13-7, the cumulative pyramid, $+1,+160-1$ in figure 13-8.

9. About 3rd-base groups of ams:

Number of ams in the G+C- and U+A-groups are possible to associate to orbital numbers, as in figure 13-6 below. U+A: 14 ams , 2 with indifferent 3rd base; G+C: 10 ams, 6 with indifferent 3 rd base.

Fig 13-12: Codon groups after 3rd base compared with orbital numbers:

A note:
Ams with 3rd base A/G (+ A or G) $=638$
$638=352+286=11 \times 32+\mathbf{1 1}(\mathbf{1 8}+\mathbf{8})$, orbital numbers
Together with all "debranched " 2-base-coded ams 335 we get the sum = 973 .
$973=$ figures $1 / 2 \times(18+14+10),-2$.
3rd base $\mathrm{U} / \mathrm{C}=531$
$531=\mathbf{1} / \mathbf{2} \mathbf{x}$ figures 10-6-2.

10. Two more special annotations:

a) Numbers $\mathbf{1 1 0}$ and 26:

Two numbers in the 2×2-chain, 110 as the sum of the whole chain and 26 as the sum of middle two numbers $18+8$, give associations to the displacements between single base groups of as from 1st to 2 nd base order: $+/-2 \times 110$ in the G- and C-groups and -/+ 26 in the U - and A-groups. An eventual connection?

It should imply a two-way direction aspect on the G+C-groups versus one-way direction in the U+A-groups.

Compare the numbers in these differences:
To purine - pyrimidine group:
$\mathrm{U}+\mathrm{A}=960,-26=934=\mathrm{G} 2+\mathrm{A} 2$; from $\mathrm{U}+\mathrm{A}, \sim \mathrm{U} \rightarrow \mathrm{G}$
$\mathrm{G}+\mathrm{C}=544,+26=570=\mathrm{C} 2+^{\prime} \mathrm{U} 2$; from $\mathrm{C}+\mathrm{G}, \sim \mathrm{G} \rightarrow \mathrm{U}$
To keto- / amino groups:
$\mathrm{U}+\mathrm{A}=960,-110=850=\mathrm{C} 1+\mathrm{A} 1$; from $\mathrm{U}+\mathrm{A}, \sim \mathrm{U} \rightarrow \mathrm{C}$
$\mathrm{G}+\mathrm{C}=544,+110=654=\mathrm{G} 1+\mathrm{U} 1$; from $\mathrm{G}+\mathrm{C}, \sim \mathrm{C} \rightarrow \mathrm{U}$
b) Some numbers of the $\mathbf{2} \mathrm{x}^{\mathbf{2}}$-chain, orbitals, cumulative ones as $\mathbf{2 8}$ etc. read in opposite directions:

$$
\begin{aligned}
& 28+82=110, \text { x } 2=220=\mathrm{UG}+\mathrm{GU} \\
& 26+62=88, \mathrm{x} 2=176 \\
& 18+81=99, \mathrm{x} 2=198=\mathrm{CA}+\mathrm{AC} \\
& 14+41=55, \mathrm{x} 2=110 \\
& 10+01=11, \mathrm{x} 2=22 \\
& 08+80=88, \mathrm{x} 2=176=\mathrm{CU}+\mathrm{UC}+\mathrm{GU}+\mathrm{AC} \\
& 06+60=66, \mathrm{x} 2=132=\mathrm{GA}, \mathrm{AG} \\
& 02+20=22, \mathrm{x} 2=44(\mathrm{CO} 2)
\end{aligned}
$$

14. Halved orbitals as a superposed chain

1. Sum of triplets read in the halved orbital chain:

Intervals in the 2×2-chain in preceding file 13 give the orbital numbers in the periodic system. Halved these numbers, 9-7-5-3-1, may be regarded as a superposed chain to steps in the most elementary chain 5-0: 5-4, 4-3, 3-2, 2-1, 1-0:

Fig 14-1: Halved orbital numbers 9-7-5-3-1 as superposed level:

$975+531=\mathbf{1 5 0 6}=$ mass of $24 \mathrm{ams} \mathrm{R},+2$.
Cf. $975 / 531 \times 10^{3}=1836,158 \sim$ mass quotient proton/electron (p/e)

2. Classes of tRNA synthetases:

We may note here that the triplets 975 and 531 approximate sums of ams in the two classes I and II of tRNAs - if the different codons for Arg, Leu, Ile and Ser with two codons don't split their affiliation:

Class I: Leu, Ile, Met, Cys, Val, Glu, Gln Arg, Tyr, Trp: Sum 975 +2 (with 2 sets of Leu, Ile, Arg)
Class II: Pro, Ala, Gly, Ser, Thr, His, Lys, Asp, Asn, Phe. Sum 531-4 with two Ser

3. Wavy, horizontal reading:

The two-level chain in figure 14-1 above may be regarded as a kind of "wave function". and a first observation is that the square root out of 6 -figure numbers, from lower 5 to upper 5 in the middle, outwards and inwards, gives the sums of ams in the 12-groups 770 and $734,-/+1$, total 1504 of 24 ams :

Fig 14-2: Square roots out of 6-figure numbers:

$$
\begin{aligned}
& \text { 5-9-4.7-3-5: } \rightarrow^{J}=771.2 ., \approx \text { Cross-plus Form-coded ans }+1 . \\
& 5-3-7 \cdot 4-9-5 \rightarrow \sqrt{J}=732,1 ., \approx \text { RNA- plus Fair-coded ans }-1
\end{aligned}
$$

Note that 734-1 is derived from the middle of the chain where we had this 734-group of ams in the ES-chain 2(208 +159).

Next step from lower 4 to upper 3 gives the sum of $20 \mathrm{ams}(\mathrm{R})=1258$ without the four double-coded ones and these divided in Z and $\mathrm{N}-/+1$ outwards - inwards 688 and 570, also numbers for $\mathrm{G} 1+\mathrm{A} 1$ and $\mathrm{C} 2+\mathrm{U} 2$ among the 24 ams.

4. Vertical readings in halved orbitals. - An illustration of fusion processes:

Another way of reading in the chain is downwards, adding numbers $95+94,94+74,74$ +73 etc. as in figure 14-3 below. This gives sums that may be called "A-Z"--numbers of first elements in K - and L-shells, ${ }^{16} \mathrm{O},{ }^{14} \mathrm{~N},{ }^{12} \mathrm{C}$ etc.

Fig 14-3: " A-Z"-numbers of elements - an illustration to fusion processes:

The figure could illustrate fusion:

- the right part first elementary steps from H and Deuterium via Tritium and ${ }^{3} \mathrm{He} 2$ to ${ }^{4} \mathrm{He} 2$, then e. g. to ${ }^{6} \mathrm{Li} 3$ to 2 alpha $8-4$;
- the left part illustrating the carbon-nitrogen cycle in the sun, O 16-8, N 14-7 C, 12-6, intermediate steps neglected here. (10Boron, 5 Z , in the middle.) Interpretation of first and last step, see the figure.

The close, inner relations C-N-O in the fusion of the sun could be regarded as "outsourced" to a planet and translated to external relations on the higher molecular level, forming the bases and amino acids and the situation when their B-chains bind to each other in the protein synthesis;.[- $\mathrm{O}=\mathrm{CO}-\longrightarrow \leftarrow+\mathrm{H} 2 \mathrm{NH}-]$.

Comparison with numbers in the ES-chain:

Sums of numbers from 168:

$$
\frac{168147126105}{\mathbf{5 4 4}+\mathbf{2}} \quad \frac{84634221}{\mathbf{2 0 8 + 2}}
$$

The role of boron?
2 times numbers 147-126-105 gives sums near the first three numbers in the ESchain:
$2 \times 189=378(1 / 2 \times 752+2,2 \times 168=336=544-208$ or here $546-210$.
$2 \times 147=\mathbf{2 9 4} \sim \mathbf{5}^{\prime}+2,2 \times 126=\mathbf{2 5 2} \sim \mathbf{4}^{\prime} ; 2 \times 105=\mathbf{2 1 0} \sim \mathbf{3} \mathbf{\prime}^{\prime}+\mathbf{2}$.
$189-1=1 / 4 \times(292+252+208)=\mathbf{1 / 4} \mathbf{x} 752$
$168=\mathbf{1} / \mathbf{2} \times 336(544-208)$
$147-1=1 / 2 \times 292$
$126=\mathbf{1} / \mathbf{2} \times \mathbf{2 5 2}$ - steps 4-3-2 here $\sim 5-4-3$ in the exponent series
$105-1=\mathbf{1} / \mathbf{2} \times 208$
$84=292-208$, etc.
Nitrogen - Carbon:
"A-Z"-numbers of C and N , characterizing both codon bases and ams, gives the sum
273, the mean value of two ams unbound.
$12 \times 273=3276$, total sum $R+B$
3276 is also "A-Z"-number of C, $126, \times 26$ ($=18+8$ in the $2 x^{2-}$ chain).
First six "A-Z"-numbers, including 84 , give the sum 819 , times $4=3276$.
Sum of left part: $189+168+147+126=\mathbf{6 3 0}$, to compare with mean value of side chains of an ams, nearly 63 .

There is the relation too that four last numbers, 84-63-42-21, regarded as debranched from higher steps and representing $4,3,2$, 1 steps à 21 , raised with exponent $\mathbf{3 / 2}$ give the sum $=1638,2 \times 819$ and half of total sum of unbound ams.

$$
84^{3 / 2} \approx \underline{770} ; 63^{3 / 2} \approx \underline{500} ; 42^{3 / 2} \approx \underline{272} ; 21^{3 / 2} \approx \underline{96} . \text { Sum }=1638 .
$$

5. The p/e-quotient, π-mesons and μ-leptons:

In figure 42 above we had the halved orbital numbers 9-7-5-3-1 as a superposed chain to the elementary one. Quotient between this chain as two triplets gives the $\mathrm{p} / \mathrm{e}-\mathrm{relation}$, inverted about the same 544 -number as above:

$$
\begin{aligned}
& \mathbf{9 7 5} / \mathbf{5 3 1} \times 10^{3}=1836,158 \approx \text { mass quotient p/e } . * \\
& \mathbf{5 3 1} / \mathbf{9 7 5} \times 10^{3}=\mathbf{5 4 4}, 6 . \times 10^{-3} ;\left[\sim(2 / 3)^{3 / 2}=544.33 .\right]
\end{aligned}
$$

*(About middle figure 5 as last and first number in the two triplets we should perhaps remember that the inner electron is said to sometimes exist inside the nucleus of an atom.)

Wavy reading of 2-figure numbers in figure 14-4 below, $59+94+47+73$ in two steps, gives sum 273, \sim the quotient π^{+}-meson / electron as parts of the proton. π-mesons appear at disintegration of protons in p-anti- p-annihilations. Next two steps $47+73+$ $35+52$ give 207, \sim the μ-lepton in e-units, released in the further disintegration of π mesons.
2 times these numbers $=544+2,416-2$, with reference to the ES-series.
Fig 14-4: 273 and 207 from addition of 2-figure-numbers in the two-level chain:

$$
\begin{aligned}
& \mathbf{2 \times 2 7 3 = 5 4 6 = G + C , + 2} \\
& 2(273+207)=\mathbf{9 6 0}=\mathbf{U}+\mathbf{A}
\end{aligned}
$$

It was noted before that 273 is the mean value of two unbound ams (and sum of what here was called "A-Z"-numbers of N - and C -atoms 14-7 and 12-6).
The correspondence with numbers for charged π-mesons and μ-leptons, the same quotients on levels of different units (e- versus u), invites the not unreasonable view on amino acids and proteins as having a corresponding role in the very superposed unit of a cell as these elementary quanta in the nucleus of an atom.

6. Reading 2-figure numbers in the superposed chain:

A two-way directed reading of such numbers can give the 4 codon type groups of ams, Cross- and Form-coded, Pair- and RNA-coded, as shown in Genetic code II: " 17 short files", number 17.

15. x^{1} - The triplet series
 The x^{4} series

I. The triplet series, $\mathbf{x}^{\mathbf{1}}$:

a) Reading triplet numbers in the elementary chain 5-0:
(Most of this file from "17 short files", 05.)
The most elementary chain 5-4-3-2-1-0 read as triplets approximates the sum of Rchains of ams read as two triplets: $2(543+210)=1504+2$, or read as 4 triplets as in figure 15-1.

Expanded with triplets from 987-876 etc. the chain gives the approximate whole mass of 24 ams. Intervals in each step $=111$ sum up to 24 times B-chains à 74 .

Fig 15-1: Triplets from elementary chain 5 to 0 and the same chain expanded:

$$
\begin{array}{cc}
543 & \frac{432-321-210}{963=U+A} \\
\mathrm{G}+\mathrm{C}, & \text { Sum } 1506 \\
-1 & +3
\end{array}
$$

The series expanded:

A note about number 3282:

Number 3282 is also the difference between products of base pair numbers:
G 151, C 111, U 112, A 135:
$2 \times \mathrm{GxC}=33522$
|------- 3282
$2 \mathrm{zUxA}=30240$
$3282=6 \times 547.5 \times 547=2735=20 \mathrm{ams}$, without the double-coded ams.
$(1 / 2 \times 3282=1641$ is said to have something to do with a formula for first amount of prime numbers.)

A "condensed" or undeveloped elementary chain 5-0, dimensionally, written:
$5-4-3-\frac{2-1-0}{=3}, \sim 5433 \sim 546 \quad$ ("before disintegration") $=2 \times 273$.
$546 \times 6=3276$, the sum of $24 \mathrm{ams} \mathrm{R}+\mathrm{B}$ unbound.

b) A-N-Z-numbers of ams approximating the triplets:

Fig 15-2: $A-N-Z-$ as triplets in codon groups:

$$
\begin{aligned}
& 210=\text { Z-number UG-UC-AC-A } \underline{G},+1=G, C \text { in } 2^{\text {nd }} \text { position } \\
& 321=\text { Z-number UU-UA-AU-AA-coded, }+2 \\
& 432=\mathrm{N} \text {-number U1+A1-coded } \\
& 543=\text { A-number } \mathrm{G}+\mathrm{C} \text {-coded ams }-1 \longrightarrow \uparrow \\
& \mathrm{G}+\mathrm{C}=\mathbf{5 4 4} \mathrm{A} . \mathrm{U} 1+\mathrm{Al}=\mathbf{4 3 2} \mathrm{N}, 528 \mathrm{Z} .(\mathrm{U} 2+\mathrm{A} 2-1+1) .
\end{aligned}
$$

The chain $\mathrm{A} \rightarrow \mathrm{N} \rightarrow>\mathrm{Z}$ implies polarization steps from mass to charge as assumed in the background model.

Cf. figure 13-8 file 13, approximate the same numbers halved.
[A connection wirg the ES-chaib and its first number 5'?
$\mathbf{1 / 5 4 3}-\mathbf{1} / \mathbf{2 1 0}=\mathbf{- 2 9 2 . 0 3} \times 10^{-5}$.]

c) B-chains:

In a peptide bond between ams their side-chains come to point in opposite directions. For the triplets 543 and 210 arranged in such a way, see figure 16-2 below,. When read in opposite directions, we get the B-chains of 12 ams á $74 \mathrm{~A}=888$ as divided $543+$ 345.

Fig 15-3: Triplets 543, 210 written as neighbor R-chains in opposite directions:
753
4210
$543 \Longleftrightarrow 345 \mid$ B-chains $\rightarrow 543+345=888$
012
753 R-chains
$888=12$ B-chains ' 74 . A division on numbers 543 and 345 gives:
$543 / 12=45,25 \sim 45 \mathrm{~A}=\mathrm{COOH}$
$345 / 12=28,75 \sim 29 \mathrm{~A}=\mathrm{H} 2 \mathrm{~N}-\mathrm{CH}$
The B-chain gets approximately divided in the COOH-part 45 and $\mathrm{H} 2 \mathrm{~N}-\mathrm{CH}$-part 29. Cf. the similar division in the ES-series.

```
345-|-210
    135 = mass of the A-base
```

135 is also mass of Meth, $\mathrm{R}+\mathrm{B}$, when losing its end group $\mathrm{CH} 2=-14$ at start of protein synthesis.
$012+345=357=$ sum of $\mathrm{A}+\mathrm{C}+\mathrm{C}$, the common ends of tRNA.
Sum of a triplet chain "inwards" 012-123-234-345 $=2 \times 357$.
A-base $012+123=135$, plus first two intervals $=+2$ C-bases $111=357$.

B-chains as periodic numbers:

Fig 15-4:

Cf. a similar series:

$565656 \rightarrow \sqrt{ }=\underline{752}, 101 \ldots, \times 2=1504,2 \ldots$, total of $24 \mathrm{ams} R$
A note:
$543 / 3=181=\mathrm{Tyr}, \mathrm{R}+\mathrm{B}$
$321 / 3=107=$ Tyr R.
Two steps in the triplet series $=-222=3 \times 74$, the normal B-chins unbound
Two more numbers from the elementary chain 5-0:

$$
\begin{aligned}
& 4 / 5+3 / 4+2 / 3+1 / 2=1 / 2 \times 5,433333 \\
& {[1 / 5+1 / 4+1 / 3]^{4}=376,5 . \times 10^{-3} ; \times 2 \times 10^{3}=\mathbf{7 5 3}, 037 .}
\end{aligned}
$$

About the elementary series as exponents to 2 as a binary lnguage and Serine, see file 17.16.point 6 .

II. The x^{4} series:

The x^{4} series as an underlying chain?
It would agree with the general thoughts behind this research that chains as x^{4} and $x^{3}(x$ $=5-0$) could underlie the ES-chain on deeper levels.

In the chain, figure 15-2 below, we have that 625-81 $=544$, the $\mathrm{G}+\mathrm{C}$-coded ams and $625+256,+81=962$, the U+A-coded ams +2 . The operation $-/+81$ in this series x^{4} is comparable with the similar operation $-/+208$ in the ES-chain.

Fig 15-5: An x^{4}-chain, some codon groups of ams:

5^{4}	4^{4}	3^{4}	2^{4}	1^{4}
625	-256	81	-16	$1-1-0$

$625-81=\mathbf{5 4 4}=\mathbf{G}+\mathbf{C}$
$\underline{625}+256+81=962=\mathbf{U}+\mathbf{A}+2$ $1 / 2 \times 544-1+81=191$, G1, and $353, \mathrm{C} 1$.
P-group and its energy-storing bonds in step 3-2:

Number 81 is both a charged molecule H 2 PO 3 but also the R-chain of His (the only ams that not derives from Glycolysis-Citrate cycle but from the A-base).
It could be observed that -/+ 81 gives the individual codon base groups in 1st order in the ES-chain:
$1 / 2 \times 544-/+81=$ G1 191, C1 353,
$544-81=\mathrm{U} 1463$
$416+81=$ A1 497. (An eventual influence of phosphorus groups, P-group H2PO3~ = 81 or of His, R 81?)
Sum $4^{4}+3^{4}=337$ is $1 / 3$ of the total sum of the ES-chain..

16. An x^{3} - series

1. Middle numbers 27 and 8:

In an $x 3$-series, $(x=5-0)$, the numbers 27 and 8 appear around the middle step 3-2. They are the factors in the astonishing regular table of ams with mixed codons below, where the ams with differentiating 3rd base in their codons amount to 594.

An x^{3}-chain and factor 35 in the 12-group 770:
$125-64-27-(19)-8-1-0 .(x=5-0)$

Table 2:

GA	Glu	CA	His	UG	Trp	AG	Arg	$\rightarrow 385$								
GA	Asp	CA	Gln	UG	Cys	AG	Ser2	$\rightarrow 209$								
GU	Val	CU	Leu	UC	Ser1	AC	Thr	$\rightarrow 176$								
175	210									208					177	385
385				770												

Sums of rows in the table:
385: $27+8=35, \rightarrow \times 11=385$
209: $27-\mathbf{8}=\mathbf{1 9} ; \rightarrow \mathrm{x} 11=209 \ldots$ Sum $594=27 \times 11 \times 2$.
176: $\quad=8, \rightarrow \times 11 \times 2$
One 27 number disintegrates into interval 19 and 8 into rows two and three..
(The factor 11 in this group of ams with mixed gets no special explanation in this x3chain.)
A note:
About factor 11 among ams with mixed codons as an expression for double-direction in steps (file I-05): $01+10=11$, the last step in the elementary chain $5-0$. Cf. steps in the half orbital chain 9-7-5-3-1 read as 97-75-53-31=-2 x 11 in each step.
(Are there eventually any 11 -factor in quark computers?)
Compare also the atomic mass of bases A and U and interval 27-8=19 divided 5-14, (interval 9 as in a simple reading of the step in opposite directions 32-23)

A-base $5 \times 27=135$, U-base $\mathbf{1 4 \times 8 = 1 1 2}$

Cf. these numbers 112 and 135 from quotients between spectral lines of hydrogen (end of Introduction

About some other numbers in the x3-chain compared with the ES-chain, see below.

2. A root in physics of number 544?

Numbers 27 and 8 have appeared in group theories of elementary particle physics (GellMann M in The Eightfold Way 1964)), this mentioned with nothing of a closer knowledge in that field.

A suggested connection here seems supported by following relations in figure 16-1 below, which could imply that number 544 for the G+C-group of ams had its root in the the mass quotient between the electron (e) and the proton (p) of a single H -atom - or rather $(\mathrm{e}+\mathrm{p}) / \mathrm{e} \approx 1837.117 \mathrm{x} 10-6$.*

* $\mathrm{p} / \mathrm{e} \approx 1836.12, \wedge=544,623 \times 10-6$. If $\mathrm{p} / \mathrm{e}=975 \times 103 / 531$ (a quotient in the middle in the chain of halved orbital numbers $=1836.158$, the inverse becomes $544.615 \times 10-6$. (Two similar or equivalent numbers may of course have very different origins as similar words in languages.)

The square root of $8 / 27, \times 10^{-3}=[2 / 3]^{3 / 2}=\mathbf{5 4 4 . 3 3 1} \ldots \times 10^{-3}$ is a similar number, however not exactly the same.

A suggested connection here seems supported by following relations in figure 16-1 below, which could imply that number 544 for $\mathrm{G}+\mathrm{C}$-group of ams may have its root in the p/e-quotient of a single H -atom:

Fig 16-1: Square roots of 27/8, and inversions of 27 and 8:

$$
[8 / 27]^{4} \times 10^{5}=\underline{770}, \underline{734} 66 . \approx 2 \times 385 .
$$

$8 / 27=0,296296 \ldots$ as period: $296=4$ times number 74 of B-chains.
$1 / 4$ of the period $296=2 / 27=740740740 \ldots\left(x 10^{x}\right)$ is the inversion of A-base number 135.

Inversions may be regarded as one kind of references between units or energy levels in complementary fields outside - inside number 1 as a ring around the origin in a coordinate system.

The numbers 1836 and 544 among ams as quotients, however, concern units on different levels, referring to number of e and number of u (\sim shell versus nucleus in the atom). If we could assume that quotients as such reappear on different levels, already a single H -atom in some way could include resonances in the future development of life.
More reasonably expressed, the same underlying elementary number series in its development gives such number relations on different levels through the evolution.
A bit curiously the "same" number 544,33 ..as from $\sqrt{ } 8 / 27$ is given out of a "factor chain", 1 to 5 times 2-figure numbers of steps in the elementary chain:
$(8 / 27 \rightarrow V=544,3310540 \times 10-3, \rightarrow V=1,837117307$. $)$

$$
\begin{aligned}
& \sqrt{27 / 8} \times 10^{3}=1837,12 \approx \text { p/e-quotient }+1 \text { (e). } \Lambda=\mathbf{5 4 4}, 33 \cdot \times 10^{-3} \\
& \sqrt{ } 8 / 27 \times 10^{3}=\mathbf{5 4 4}, 33 . \sim \mathrm{G}+\mathrm{C}=(2 / 3)^{3 / 2} \times 10^{\mathrm{x}} \\
& \text { - interval } \sim 352,=\mathrm{C} 1-1 \\
& \sqrt{ } 1 / 27 \times 10^{3} \quad=192,45, \sim \mathrm{G} 1 \quad=3^{3 / 2} \wedge \times 10^{\mathrm{x}}(\mathrm{G} 1=191) \\
& \sqrt{8} \text { inverted }(\Lambda) \times 10^{3}=\mathbf{3 5 3}, 55 . \sim \mathrm{Cl}=2^{3 / 2} \wedge \times 10^{x}(\mathrm{Cl}=353) \\
& \text { Sum 546 }=2 \times 273 \text {, }(\times 6=\text { total } \mathbf{3 2 7 6}, R+B)
\end{aligned}
$$

```
A "factor chain:"
    \(1 \times 54\)
    \(2 \times 43\)
    \(3 \times 32\)
    \(4 \times 21\)
\(+5 \times 10 \rightarrow-->5486968450 \rightarrow V=74074,074074 \ldots \rightarrow V=272,165 \ldots\)
\(=370\)
    \(5 \times 74 \times 2=544,3310540^{*}\)
```

*The numbers differ after the 11th digit!
(A factor chain in opposite direction, $1 \times 45,2 \times 34$ etc.. gives the sum 5×47, the factor in total ams R 1504 and the mass of Cys.)

To summarize, the numbers 27 and 8 may through simple operations join approximate numbers the inverted p / e-quotient, the masses structuring ams masses (R) of mixed codons, the sum 544 of $\mathrm{G} 1+\mathrm{C} 1$ and its division on these codon groups and the A-base with its inversion of a periodic 74, the mass of unbound B-chains of ams..

If the numbers 27 and 8 in group theory for elementary particles has been connected with the e/p-quotient is left unknown here. Perhaps it is two different hypothesis that are involved in the figure above for the origin of the number 544?

The number 385 gets its simple explanation directly from 27 and 8, apart from factor 11 , and 544 was shown as $\approx \sqrt{ } 2$ times 385 , through inversions and halving connected with approximate number 367 , the sum of the 12 -group of ams with non-mixed codons (in file I-8, fig 8-1).

The e/p-quotient, or $\mathrm{e} /(\mathrm{e}+\mathrm{p})$ as a deeper root for number 544 seems to concern a more fundamental issue about inversions and conjugates in higher dimensions; inversions as a property of steps towards higher levels of complexity and the biochemistry of life.

Cells are in some respects the inversions of an atom, especially in the relation of charges, with dominating negative charge inside, mostly carried by the proteins, and positive charge outside. The hydrophobic bonds in P-lipids of cell membranes could be imagined as one expression for an inversion (center to anti-center) of the strong force (Fst) on this higher level. (The mentioned group theories are also used in analysis of the electroweak and strong forces.)

3. Some numbers in the x3-chain times $\mathbf{3}$ compared with the ES-chain:

Besides the middle numbers 27 and 8 here, the x 3 -chain as a whole doesn't any simple correlations with elementary codon groups of ams in similar ways as in the $\mathrm{x} 4, \mathrm{x} 1$ and x2-chains (files II: 13, 15, 16).
Some numbers could or should eventually be noted. With a factor 3 times the series we have 375-192-81 as first three numbers:
$-375=1 / 2 \times 750,1 / 8$ of a total sum 1500 , approximating the total of R of 24 ams .

- 192 is a returning factor in $385-1,770-2,575+1$ (the U+A-group in 12-group 734), in 960 (U+A-groups R) and in 1344 (sum of bound B-chains)
-81 , 3 rd number in the $x 4$-chain (file 15).
$-192+81=273$, the mean value of 2 unbound B-chains.
- Interval 111, (cf. reference Scherbak) is the number for steps in the triplet series x1
(file 15). (111 in a hexagonal system $=273$ in a decimal system.)

6 (3×2 in step 3-2?) times the $\times 3$-chain gives a series that have some similarities with the ES-series:

Fig. 16-2:

$750-210=540,-\mathrm{G}+\mathrm{C}-4$
$750+210=960,-\mathrm{U}+\mathrm{A} \ldots \ldots .$. Cf. in the ES-series: $752 \gamma+208=544$ and 960.

- 750 divided in ams with mixed (385) - non-mixed (367) codons (the first interval here), -1 in each group.
- 162 ~the difference G1-C1.
$-384+162=385+159+2=\mathbf{5 4 6}, 2 \times 273,\left(4^{\prime}+3^{\prime}\right)$.
the mean value of 2 unbound ams.
$-384+210=4^{\prime}+3^{\prime}+2^{\prime}$ in this chain $=\mathbf{5 9 4}=385+209$ in the table above
- Interval 4' ${ }^{\prime} 2^{\prime}=384-48=336,6$ B-chains bound.

The sum of the whole series 225 times $6=1350$. (6×207) $1350 \rightarrow \sqrt{ }=367.42 \times 10-1, \rightarrow \wedge=272.1655 \times 10-4, \times 2=544.331054 .10-4=$ $=1 / 10$ of $\sqrt{ } 8 / 27$.

However, if there is a deeper relation between the factors 27 and 8 here and the ESchain remains an open question. It is possible that these numbers should not be associated with a whole x 3 -series at all but represent a transformation of exponents in step $3 \rightarrow \leftarrow 2$ of the ES-chain, with the background model (fig 03-3) in mind

and the double-directed processes, meeting in the middle step, somehow implying a change of the exponent $2 / 3$ to $3 / 2$ and including an inversion... Cf. the assumption in the background model of new levels developing through step $3 \rightarrow \leftarrow 2$.

$$
\mathrm{x}^{4} \rightarrow 3 \mathrm{x}^{3} \rightarrow \mathrm{x}^{3 / 2} \rightarrow \uparrow \uparrow \leftarrow \mathrm{x}^{2 / 3} \leftarrow 2 \mathrm{x}^{2} \leftarrow \mathrm{x}^{1}
$$

There is a similar pattern of two-way direction in the protein synthesis, where tRNAs as from opposite strands of DNA meet mRNA "the other way around" at ribosomes in the "middle" of the process.

Number of codons:

This x^{3}-chain as basis for number of codons?

- 5 bases T/U-A-G-C become
- 4 inwards DNA and 4 outwards in RNA, which, become.
- 3 bases in codons, as 3 positions on ribosomes. Third position indifferent gives
- 2 bases relevant in one 3 rd of codons. Then leads to
- 1 base in nucleotides, becoming active coenzymes in-MP, -DP, -Taprooms.

4 bases gives $\mathbf{6 4}$ possible codons but leads to 3 bases in actual codons $=\mathbf{2 7}$ differentiating ones including 3 stop codons, 2 bases relevant in 8 codons.

Rest 19, 27-8 codons with more or less halfway defined 3rd base in step 3-2:

- $\mathbf{8}$ ams with 3 rd base U/C,
- 8 ams with A/G, A or G, (5 A/G-coded, 3 ams "3-base-coded"),
- plus 3, usually stop codons (or 2 if we count UA-A/G as one).

We could possibly imagine that it's the interval step $5^{\prime} \rightarrow 4^{\prime}=61(125-64)$ that decides this reduction and appears in later numbers as potential "pre-codons" ?
(With this view it's possible to imagine that the not ams coding parts of DNA-strands, should be divided in quadruplets for the interpretation? Cf. perhaps how strands are cut, giving sticky ends?)
Number of codons as halvings:

$$
\begin{aligned}
& 64 \rightarrow 32: 32=\text { " } 2 \text {-base-coded", x 4:8 ams }=335 \\
& 32 \rightarrow 16: 16=\text { U/C-coded, x } 2: 8 \mathrm{ams}=531 \\
& 16 \rightarrow 8: \text { A/G-coded, } \times 2: 5 \mathrm{ams}=376,+3 \mathrm{ams} \mathrm{x} 1, \mathrm{~A} \text { or } \mathrm{G}=262
\end{aligned}
$$

+3 x , usually stop codons.

